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Abstract

Abstraction and generalization are central to human intelligence. While many
algorithms explain how generalization occurs once abstract knowledge is acquired,
the mechanisms by which abstract variables are learned remain unclear. One
approach is to interrogate computational models that reproduce human behavior.
Handcrafted cognitive models are interpretable but rely on strong assumptions about
predefined variables. In contrast, recurrent neural networks (RNNs) make fewer
assumptions and capture behavior more accurately, yet yield high-dimensional
representations of limited interpretability. Here, we use a Disentangled RNN
(DisRNN) that uses information bottlenecks to learn a compact set of independent,
interpretable latents. Previously, the DisSRNN recovered expected mechanisms
from simple behaviors. We extend the model to uncover novel mechanisms in
a complex task with hidden structure across multiple timescales. The DisRNN
was first trained on synthetic data from a handcrafted successor representation
(SR) model fit to human behavior, then fine-tuned on data from 41 participants
performing the task during fMRI. The model reproduced human learning dynamics
across levels of abstraction, including generalizing the task schema to new task
instances. Interrogating the model latents revealed a small set of disentangled
variables that aligned with the task’s abstract structure, providing trial-by-trial
estimates of cognitive variables to be tested in neural activity. This framework
offers a mechanistic, interpretable account of how humans learn and generalize
abstract structure, linking behavioral algorithm to potential neural implementation.

1 Introduction

Flexible human behavior relies on learning general rules or patterns in an abstract format that supports
generalization to new situations. However, several central questions remain unknown. What variables
are used to represent the abstract structure? How are they learned and deployed from trial to trial?
And how is the algorithm implemented in neural activity? One approach to answering these questions
is to reproduce human behavior with models whose internal computations are interpretable and can
be compared with neural signals.

Handcrafted cognitive models such as the successor representation (SR) infer abstract structure from
observable states and outcomes [4} 2} (9] |5]. They assume the cognitive variables and learning rules a
priori, which affords high interpretability, but by asserting a specific mechanism, risks overlooking an
alternative mechanism with greater validity and ability to explain fine-grained behavioral dynamics.
Recurrent neural networks (RNNs) learn hidden states directly from data and reproduce behavior
with high fidelity, yet their high-dimensional internal activity is hard to interpret or align with neural
measurements [0, 7, [10]].

We aimed to combine the interpretability of handcrafted models with the expressivity of RNNs. We
built on prior work on Disentangled RNNs (DisRNNs) [8]], which used information bottlenecks to



yield independent, interpretable latent variables. Applied to simple behaviors, the DisRNN recovered
the expected reinforcement learning algorithms, such as Q-learning. Here, we tested the limits
of this approach in a richer behavioral domain where the learning mechanism was unknown and
multiple algorithms were theoretically possible. In particular, we applied the DisRNN framework
to human performance on a decision task where learning unfolded over multiple timescales and
levels of abstraction, from local associations to generalization to novel task instances. The ability
of the DisRNN to capture the complex dynamics of human learning was unknown. Likewise,
multiple learning algorithms had been proposed—each with distinct internal representations—but not
disambiguated. By not assuming a particular algorithm, the DisSRNN offered a means of generating
the intrinsic human strategy. Crucially, because the DisRNN encouraged a compact, disentangled
representation, it afforded the opportunity to identify the strategy and produce latent variables that
could be directly compared with neural activity.
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2 Methods

2.1 Behavioral Task

We adapted a reversal-learning task
to engage abstract learning at multi-
ple timescales and levels of abstrac-
tion B]. In each trial, partic-
ipants viewed one visual stimulus
from a fixed set and chose between
two responses to obtain a determin-
istic reward (Fig. |I|A). Trials were
grouped into blocks, during which the
correct stimulus—response—outcome
(SRO) contingencies remained stable.
Within a block, participants gradually
learned the correct response for each
stimulus through feedback (within-
block learning). After several blocks,
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Figure 1: Human behavioral task with multiple timescales
of learning. A: Single trial structure. On each trial, a visual
stimulus appeared and participants chose the left or right button
to maximize reward given deterministic feedback. B: Stimulus-
response-outcome contingencies were stable for blocks of trials
(within-block learning) then switched without cue depending on
latent context (cross-block learning). Across sessions, participants
generalized task structure to novel stimuli (cross-session learning).
For any session, two stimuli shared the same response, and the other
two stimuli shared the opposite response (brackets).

the SRO contingencies reversed with-
out warning, signaling a change in the
latent context (Fig. [IB). To adapt, par-
ticipants had to infer that the context
had switched and update the correct
responses for all stimuli based on feed-
back from only one of them (cross-
block learning). The experiment con-
sisted of multiple sessions. In each
session, a new set of visual stimuli
was introduced, but the same abstract
task structure was preserved. This allowed participants to transfer previously learned knowledge
about the task’s structure to novel instances (cross-session learning).

2.2 Model Architecture

We used a DisRNN that applies information bottlenecks to disentangle the representations and update
rules for task-relevant variables [[§]]. Unlike a standard RNN, where information is distributed across
many hidden units, the DisRNN encourages networks to learn representations limited to a few scalar
latents, where each latent corresponds to a single variable, or factor of variation, in the data (Fig. [2).

The bottlenecks penalize the network for using excess information. Each bottleneck serves as a
noisy communication channel, parameterized by a learned multiplier m and noise variance o, such
that Z;, ~ N (mz, o), where z; and Z; are the scalar input and output, respectively. When o is
small, information passes through nearly intact; as o grows, the latent’s signal becomes increasingly
corrupted. Each bottleneck contributes to the loss, computed as the divergence of the sampling
distribution from the unit Gaussian.



Interpretability arises from three bottleneck loca-
tions: update bottlenecks restrict which external cantributa to the medel's dacision.
observations and other latents are used to update l

a given latent, yielding selective and disentan- /

gled dependencies; latent bottlenecks limit how Li'eTNS

much information each latent carries forward to

the next timestep, encouraging compact tempo- obsere
ral memory; and choice bottlenecks constrain ohdl
which latents contribute to the decision network,
isolating which computations influence behav-
ior. Each latent is updated by an independent
“Update multilayer perceptron” (MLP), and all
latents contribute to a separate “Choice MLP”
that renders the network’s prediction, 7.

Choice bottlenecks limit which latents
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Figure 2: DisRNN architecture. The hidden state is de-
fined by a set of scalar latents z;, . . ., zN each updated
by its own residual Update MLP. Update bottlenecks
(purple arrows) restrict from which external observa-
tions and latents each Update MLP receives input. La-
tent bottlenecks (orange arrows) limit what information
is carried forward to the next trial. Choice bottlenecks
(blue arrow) limit from which latents the Choice MLP

. . . receives input to produce decision g;. Adapted from [8].
where each bottleneck term is weighted by its

own hyperparameter, 3.

We used N = 10 scalar latents. Each Update MLP (1 MLP per latent) has 4 hidden layers of 20
units each, and the Choice MLP has 3 layers of 16 units each. On each trial, the network receives
binary inputs defining the previous choice, previous outcome, and current stimulus (4 per session * 4
sessions = 16 stimuli). The network outputs the predicted probability of choosing left versus right.

The total loss combines the supervised loss from
errors in predicting choices with the penalties
from all bottlenecks:

Llotal = Lsoflmax(y7 g) + BupdaleLupdale
+ /BlatentLlatem + BChoiceLchoice

2.3 Training

To train the DisSRNN with sufficient data, we first fit a well-validated handcrafted model based on the
successor representation (SR) to human behavioral data collected during fMRI. The SR model learned
the relationships between observable states, but did not explicitly represent latent variables. Because
the human dataset contained limited observations (n = 41 participants), we first trained the DisSRNN
on synthetic data generated by the fitted SR agent (n = 4000 synthetic agents), which reproduced
the human learning dynamics (Fig.[d] blue vs. orange solid curves). The resulting DisRNN model
was then fine-tuned on the human behavioral data to more closely capture individual variation in the
human behavior and—we presume—more closely align its latent representations with the trial-to-trial
neural signals of individual participants.
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The DisRNN accurately reproduces choice behavior in
both the synthetic SR and veridical human datasets, ap-
proaching the theoretical upperbound given the probabilis-
tic nature of the choices and with high cross-validation
performance on held-out data (Fig. 3).
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We next examine how the DisRNN captures learning dy-
namics operating at multiple timescales. Within blocks,
performance improves across repeated stimulus encoun-
ters, reflecting local associative learning of the stimulus-
response mappings under fixed contingencies (Fig. [4).
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Figure 3: DisRNN likelihoods. Scatter plot
shows normalized likelihood performance of
DisRNN for training (x-axis) and testing (y-

The DisRNNSs capture these within-block trajectories, and
fine-tuning on veridical human data achieves even greater
model predictive performance (blue solid vs. dashed lines)
than training on a synthetic agent (orange lines).

axis) partitions of synthetic SR data (blue)
and veridical human data (red; average of
10 cross-validation folds). Theoretical upper-
bounds (dashed lines) of maximum possible
performance given choice stochasticity.
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text switch, which we refer to as inference trials.

Overall, accuracy on inference trials is above
chance for both human and synthetic agents, in-
dicating agents learn and exploit the task’s latent
structure.

Figure 4: Choice accuracy on repeated stimulus
encounters shows within-block learning. Separate
lines are plotted for data (filled circles, solid lines) and
DisRNN model fits (open circles, dashed lines) from
Across blocks, accuracy on inference trials in- the veridical human (blue) and synthetic SR (orange)
o . . . datasets. Shading shows 95% CI.

creases within a session, revealing the dynamics

of abstract learning for a fixed set of stimuli (Fig. [5)). Across sessions with novel stimuli, above-
chance inference accuracy arises even earlier (as early as block 1, consistent with zero-shot learning)
and reaches even higher levels, showing transfer of abstract task knowledge to novel task instances.
The DisRNN captures these dynamics for both human and synthetic agents. That is, like humans, the
DisRNN demonstrates long-timescale learning and a shift to higher forms of abstraction: initially
learning the local associations between stimuli and responses, to ultimately acquiring a general
schema that supports rapid learning in novel environments by mapping new inputs to a familiar
abstracted structure.

Structure of the Learned Representations.

We next examine the DisSRNN’s internal representations—which the model architecture compresses
into a few, disentangled latents—to gain insight into the human learning algorithm. Specifically, 1)
the update bottlenecks both disentangle and reveal the inputs from which each latent learns (Fig. [fA,
right), and 2) comparing the latent activations to the concurrent task conditions reveals the information
each latent represents (Fig. [6B).

Latent 1: shared-response pair. Latent 1 receives input from two of the four stimuli per session, and
its activations encode the latent variable “shared-response”: stimuli with the same optimal response
share the same level of activation (e.g., high), while the complementary stimuli share the opposite
level (e.g., low). Strikingly, Latent 1 “listens” to only one stimulus per shared-response pair, which
implements a local form of generalization that supports within-block learning: once the correct
response is learned for one stimulus in the pair, its partner inherits the code, thereby rapidly updating
responses across stimuli, even before they have been encountered in the block.

Latent 2: rapid updating of context. Latent 2 integrates input from Latent 1 (encoding the stimulus)
and the previous choice and outcome, which is sufficient to decode the latent variable “context”.
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Figure 5: Choice accuracy on inference trials shows abstract learning and generalization across blocks
and sessions. Average accuracy on inference trials (i.e., first stimulus encounter in block) is shown by block
(x-axis) and session (columns); colors as in Fig. El Increasing inference accuracy across blocks and sessions
reflects learning of the task’s abstract structure and generalization of the structure to novel task instances,
respectively. Shading shows 95% confidence intervals. Chance is 0.5 (horizontal dashed line)
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Indeed, its activation shows rapid, step-like plateaus that flip at block reversals, indicating that it
encodes a context variable that updates quickly when surprising outcomes occur. The rapid updating
of context, as encoded by Latent 2, enables recovery after reversals and is sufficient to support the
high inference-trial accuracy observed in human behavior (Fig. [5).
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mirrors the gradual within- Figure 6: DisRNN learns compact, interpretable set of task variables.
block improvements in hu- A. Latent bottlenecks (left) restrict learning to subset of 10 candidate latents.
man performance (Fig. E[) Choice bottlenecks (middle) restrict decisions to readout of subset of latents.
. Update bottlenecks (right) restrict from which inputs each latent learns. For
Together, the DisRNN rep-  example, latent 1 receives input from two stimuli with opposite responses from
resentations suggest a hi- each session. Row labels (italics) refer to interpreted variables (see below). B.
erarchical learning process: Activation time courses for latents 1-3 are shown, representing key cognitive
Latent 1 encodes the shared- variables (row labels). Colored bars show relevant task variables.
response pair; Latent 2 inte-
grates stimulus, response and outcome from the prior trial to rapidly infer the latent context; and Latent
3 gradually represents inferred context, permitting evidence accumulation at multiple timescales. The
update bottlenecks make this dependency structure explicit: each latent draws only on the information
required for its level of abstraction, and once the context and stimulus mapping are represented, the
model can use them to produce the choice. Unlike SR models that learn only associations between
observable states (e.g., stimulus—response pairings) over which latent states are represented implicitly,
the DisRNN reveals a hierarchical representation that supports a distinct algorithm in which latent
states (e.g., context) are represented explicitly and from which the observable states are inferred.
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4 Conclusion and Future Directions

Our Disentangled RNN (DisRNN) reproduces human abstract learning and generalization at multiple
timescales: rapid improvement over repeated encounters within blocks, context inference from
sparse outcomes across blocks, and transfer of abstract schema across sessions. It uses information
bottlenecks to uncover a small set of interpretable, cognitive variables directly from behavior. By
associating the variables with distinct latents and explicit learning rules, the model provides mech-
anistic insight into the algorithm supporting abstract learning. In so doing, the DisRNN resolves
the usual trade-off between model validity and transparency, offering a means to distinguish among
competing theories of how abstract knowledge is acquired and applied.

In addition, the DisRNN makes explicit, trial-to-trial predictions about the underlying neural represen-
tations. Future work would test these predictions by aligning the latent activations with BOLD activity
from concurrent fMRI. More broadly, this approach establishes a framework for discovering highly
interpretable cognitive variables, the processes that compute them, and the neural representations that
underlie them.
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